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Abstract

Motivation: Mapping-based approaches have become limited in their application to very large sets

of references since computing an FM-index for very large databases (e.g. >10 GB) has become a

bottleneck. This affects many analyses that need such index as an essential step for approximate

matching of the NGS reads to reference databases. For instance, in typical metagenomics analysis,

the size of the reference sequences has become prohibitive to compute a single full-text index on

standard machines. Even on large memory machines, computing such index takes about 1 day of

computing time. As a result, updates of indices are rarely performed. Hence, it is desirable to create

an alternative way of indexing while preserving fast search times.

Results: To solve the index construction and update problem we propose the DREAM (Dynamic

seaRchablE pArallel coMpressed index) framework and provide an implementation. The main con-

tributions are the introduction of an approximate search distributor via a novel use of Bloom filters.

We combine several Bloom filters to form an interleaved Bloom filter and use this new data struc-

ture to quickly exclude reads for parts of the databases where they cannot match. This allows us to

keep the databases in several indices which can be easily rebuilt if parts are updated while main-

taining a fast search time. The second main contribution is an implementation of DREAM-Yara a

distributed version of a fully sensitive read mapper under the DREAM framework.

Availability and implementation: https://gitlab.com/pirovc/dream_yara/

Contact: temesgen.dadi@fu-berlin.de

1 Introduction

Within the last 10 years, modern sequencing technologies have

brought a super-exponential growth of sequencing capacities. This

has enabled the cheap sequencing of the genomic content of pange-

nomes (Consortium, 2018), metagenomes, or many individuals of

the same species (e.g. the 100 000 genome project) that differ only

slightly from each other. Yet, the small individual differences are of

interest (i.e. SNPs, or small structural polymorphisms) to elucidate

the cause of diseases or reconstruct evolutionary events.

These datasets expose interesting characteristics. They are

large, while some large fractions are highly redundant (e.g. 100 000

genome project, or storing different strains of bacteria) and

hence amenable to compression techniques (e.g. Rahn et al. 2014;

Schneeberger et al. 2009). On the other hand, compression usually

makes it costly to implement the main operations on the data, name-

ly finding approximate matches of (many) queries (approximate in

the sense of edit distance).

While a lot of research has focused on indexing such datasets,

the resulting solutions lack, in general, the ability to easily change

the underlying datasets. That means it is costly (a) to change small

parts of a sequence, or (b) to add or delete complete sequences while

maintaining the ability to support fast approximate string searches.

For example, in metagenomics, this problem becomes more and

more recurrent. Many metagenomics search tools (e.g. Hauswedell

et al. 2014; Piro et al. 2016) and read mappers (Li and Durbin 2010;

Siragusa 2013) use Burrows-Wheeler-Transform (BWT) based

FM-indices [also often referred to as compressed suffix arrays
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(CSA); Ferragina and Manzini 2000] which have to index about 50

to 200 gigabases. Due to constant database changes occurring on a

daily or weekly basis, a newly constructed index is required every

time. Recomputing a single index of this size is quite costly in terms

of space and time, even if approaches of merging BWTs are used

(Bauer et al. 2011; Sirén 2009). For example, it takes about 1 day to

compute the index for the dataset used in our experiments. On the

other hand, the ability for fast approximate searches in such an

index is crucial. It is used either directly to find all approximate

occurrences of a (short) string or parts of it in seed-and-extend

approaches.

In this work, we address the problem posed by relying on one

large index. We propose a framework which can offer various solu-

tions for the above areas depending on some key parameters of the

input set (size of the input, amount of redundancy, the importance

of rebuilding time versus search time). We name the framework a

DREAM index (Dynamic seaRchablE pArallel coMpressed index)

and describe in this work a first working implementation of it which

allows to easily update the underlying database and at the same time

fast read mapping using a standard approach.

In a similar work, Mohamadi et al. (2015) presented a method

where references are partitioned and indexed separately based on

size. Then they used on-the-fly constructed Bloom filters to dispatch

and map reads against the individual partitions. This approach

comes short when reference datasets are rather large and there is a

need to create many partitions. While investigating this method we

noticed two major bottlenecks. First, read dispatching was ineffi-

cient, meaning almost all reads were being mapped against all parti-

tions resulting in slower overall mapping time. In addition, the

dispatched/partitioned reads are written to disc creating an addition-

al IO overhead. Second, the merging step to create one alignment re-

sult from individual alignment files takes too long.

In the following, we describe the general DREAM index

framework, followed by a description of our implementation which

consists of three major contributions. First, a taxonomy based clus-

tering/binning method for a collection of database sequences (e.g.

bacterial genomes), second a novel data structure for quickly distrib-

uting reads to bins for mapping that relies on a combination of

Bloom filters (Bloom, 1970) and k-mer counting, and lastly a dis-

tributed, parallel version of the Yara read mapper (Siragusa, 2013).

In spite of being published as a Ph.D. thesis in (Siragusa, 2013), we

have also described and evaluated the standard Yara read mapper in

detail.

2 Materials and methods

2.1 The DREAM index framework
In Figure 1, we describe the general DREAM index framework. On

the left, we show the input to our framework, namely a set of data-

base sequences that need to be indexed and one or more sets of

sequencing reads. As pointed out above, we want to be able to add

sequences to and (possibly) delete sequences from the index quickly.

At the same time, we want to be able to conduct approximate

searches of reads in the index. This is achieved by splitting the data-

base sequences into smaller clusters which contain relatively similar

sequences. Then each cluster is indexed with a method of choice, ap-

propriate for the respective approximate search method. We address

the resulting indices as sub-indices.

In more detail, the DREAM index consists of two layers for ac-

cess and a collection of smaller sub-indices that contain highly simi-

lar (sub)sequences. The dynamic operation distributor layer will

determine which sub-indices need to be created or changed to com-

plete the update operations and trigger the respective operations in

parallel on the sub-indices. The approximate search distributor layer

will determine which sub-indices need to be searched, conduct the

searches in parallel, and consolidate the results. It is obvious that

this will work better if we place relatively similar sequences (e.g.

bacterial genomes of the same genus) into the same sub-index. Note

that this will also benefit compression of those indices. However, we

will not address compression deeper within this work.

We will rather use standard FM-indices for the sub-indices since

they support fast approximate queries and give a coarse-grained

dynamization by simply rebuilding a sub-index if needed. For

other implementations of a sub-index, different solutions for the ap-

proximate search are possible and not within the scope of this

publication.

For the dynamic operation and approximate search layer, we

applied the k-mer counting lemma together with k-mer directories

based on a novel type of interleaved Bloom filters. Both strategies

are discussed in the following sections.

2.2 Binning sequences, dynamic updates
For binning references, we used TaxSBP (https://github.com/pirovc/

taxsbp), an implementation of the approximation algorithm for the

hierarchically structured bin packing problem (Codenotti et al.,

2004) based on the NCBI Taxonomy database (Federhen, 2012).

This clustering method is very efficient, given that it uses the ‘pre-

clustered’ taxonomic tree information to generate similarly sized

groups of closely related sequences. In this work, we will consider

contiguous sequences in the given reference genomes as the smallest

unit of sequences that can be clustered into bins. That means we will

not split those sequences into smaller parts. The results we present

later are based on a metagenomics datasets for which it is relatively

easy to obtain a taxonomic tree. Adding and removing sequences is

also straightforward once their taxonomic classification is known.

Note that in the absence of taxonomic information other, e.g. k-mer

based, clustering methods can be used in our framework.

We assume now that we have divided the database text T into b

bins in such a way, that a bin Bi contains similar parts of T. For our

approximate search distributor, we use what we call a binning direc-

tory in conjunction with a well-know k-mer counting lemma. The

general idea of a binning directory D is that we will mark for a fixed

k-mer in which bin it occurs using a binning bitvector, i.e we set the

i-th bit to 1 if the k-mer is present in bin Bi. Then, when we want to

Fig. 1. Sketch of the DREAM index framework. The red sequence piece

among the green ones symbolizes that we do not require a perfect partition-

ing, allowing us to use fast methods. The boxes on the right symbolize the

potential use of different index implementations. Note that we use solely FM-

indices in this work
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search a pattern p approximately, the following well-known Lemma

gives a necessary condition for the pattern to occur in a bin.

Lemma 1 For a given k and number of errors e, there are

kp ¼ jpj � kþ 1 many k-mers in p and an approximate occurrence of

p in T has to share at least t ¼ ðkp � k � eÞ k-mers.

We now discuss how to compute a binning bitvector efficiently

using a global data structure as opposed to the approach of

Mohamadi et al. (2015) et al. who used b many Bloom filters.

2.3 Interleaved Bloom filter
A Bloom filter is simply a bitvector of size n and a set of h independ-

ent hash functions that map a key value, in our case a k-mer, to one

of the bit positions. To insert a k-mer to a Bloom filter we simply set

h bit positions defined by h hash functions to 1. Collisions are

allowed in the expense of false positive results. During lookup, a

k-mer is considered present in the Bloom filter, if all h positions re-

turn a 1. Note that a Bloom filter can give a false positive answer if

the h bits were set by other k-mers. However, if the Bloom filter size

is large enough, the probability of a false positive answer is low. A

Bloom filter of size n bits with h different hash functions and m ele-

ments inserted has the following probability of giving a false positive

answer.

pfp ¼ 1� 1� 1

n

� �h�m
 !h

:

For this reason, we have to allocate sufficient space, such that pfp

does not become too large.

One problem of using conventional Bloom filters is that one can-

not store a binning bitvector directly. A Bloom filter only answers

set membership queries. Hence, Mohamadi et al. (2015) used a

Bloom filter for each bin as opposed to resolving all bins simultan-

eously. To alleviate the problem, we propose to combine b Bloom

filters (one for each bin) with identical hash functions into a single

Bloom filter by interleaving them. To put it differently, we replace

each bit in the single Bloom filter by a (sub)-bitvector of size b,

where the i-th bit ‘belongs’ to the Bloom filter for bin Bi. We call the

resulting Bloom filter an Interleaved Bloom Filter (IBF). The IBF has

a size of b � n. When inserting a k-mer from bin Bi into the IBF, we

compute all h hash functions which point us to the position of the

block where the sub-bitvectors are and then simply set the i-th bit

from the respective beginnings. Hence, we effectively interleave b

Bloom filters in a way that allows us to retrieve the binning bitvec-

tors for the h hash functions easily. When querying in which bins a

k-mer is, we would retrieve the h sub-bitvectors and apply a logical

AND to them which results in the required binning bitvector indicat-

ing the membership of the k-mer in the bins. This approach has a

significant advantage in query time as retrieving a (sub)-bitvector is

extremely cache-friendly. The procedure is depicted in Figure 2.

We anticipate that the IBF will be a very useful data structure for

set membership of objects in bins and will see a wide usage, especial-

ly for assessing k-mer content. When writing this paper, it was

brought to our attention that Bradley et al. independently thought

of a similar data structure in Bradley et al. (2017), although they do

not use them in conjunction with the k-mer Lemma and do not

interleave them.

To decide which bins are a potential target for a read we apply

Lemma 1 (the k-mer counting Lemma.) The IBF tells in which bin a

given k-mer occurs by returning a binning bitvector. Hence, we can

simply look up each k-mer from a pattern in the IBF, retrieve the

binning bitvector marking its occurrences in the bins and update an

array of counters for each bin. If the counter exceeds the threshold

for the bin, the pattern will be searched approximately in the bin,

otherwise not. This approach is depicted in Figure 3.

The IBF can be partly updated in a straightforward way to reflect

changes in bins. Consider the contents of the ith bin has changed.

First we reset the corresponding ith bits from every sub-bitvector of

the IBF. Then we add the kmers from the same updated bin to the

IBF. This can be done in parallel for multiple affected bins.

2.4 The Yara read mapper
In this section, we describe Yara (Siragusa, 2013), currently the

state-of-the-art read mapper of the SeqAn library, an exact read

mapping tool that is efficient, easy to use and produces well-defined

and interpretable results. It outperforms previous exact tools like

RazerS3 (Weese et al., 2012) by a factor of 200 in speed and even

heuristic methods like Bowtie 2 (Langmead and Salzberg, 2012) and

BWA (Li and Durbin, 2010) by a factor of two and three, respective-

ly (Siragusa, 2013). The efficiency of Yara is due to a novel combin-

ation of known algorithmic concepts and a solid implementation

based on the SeqAn library (Reinert et al., 2017).

Yara is based on the concept of bestþx mapping which we advo-

cate as more practical than conventional all-mapping (i.e. reporting

all locations within a certain error bound). Mapping strata have

Fig. 2. Example of an IBF. Differently colored Bloom filters of length n for the

b bins are shown in the top. The individual Bloom filters are interleaved to

make an IBF of size b�n. In the example, we retrieve three positions for a

k-mer (ACGTACT) using three different hash functions. The corresponding

sub bitvectors are combined with a bitwise AND giving us the needed binning

bitvector

Fig. 3. The k-mer counting Lemma using the Interleaved Bloom Filter (IBF). For

each k-mer ki generated from a pattern p we extract binning sub-bitvectors SV ð
ki Þ representing the bins containing k-mer ki. For all set bits in SV ðki Þ we incre-

ment the counter of the corresponding bin. Bins whose counter is greater than

or equal to the threshold (in this case 4) need to be validated for p

i768 T.H.Dadi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i766/5093228 by M
ax-Planck-Institut fuer M

olekulare G
enetik / Bibliothek user on 05 February 2024



been also implemented in Bowtie (Langmead et al., 2009), RazerS3

(Weese et al., 2012) and GEM (Marco-Sola et al., 2012).

To explain, we define the e-stratum

Se ¼ fði; j; eÞ : dEðGi...j;RÞ ¼ eg;

as the set of all mapping locations of a read R at edit distance e from

the reference genome G. Conventional all-mapping reports all map-

ping locations within an absolute error threshold k

S0 [ S1 [ . . . [ Sk:

Bestþx mapping restricts mapping locations to a fixed distance x

from the optimal stratum b. That means if the distance of any opti-

mal mapping location for read R is

b ¼ min fe 2 ½0; k� x� : Se 6¼ Øg;

then bestþx mapping considers only mapping locations within a

relative suboptimality error threshold x

Sb [ . . . [ Sbþx:

For example, suppose a read best-maps somewhere at edit dis-

tance b¼2 on the reference genome. Yara in mode bestþ0 reports

all locations at distance 2, while in mode bestþ1 reports all loca-

tions at distance 2 and 3. Conversely, an all-mapper with absolute

threshold k¼5 would report all locations up to distance 5.

To efficiently map reads within bestþx strata, Yara combines

three algorithmic ideas: adaptive filtration using approximate seeds,

iterative pigeonhole filtration and greedy verification of candidate

mapping locations.

Yara splits each read in kþ1 non-overlapping exact seeds and

counts the number of candidate locations of each seed in the refer-

ence genome using an FM-index. According to the pigeonhole prin-

ciple for approximate string matching, an all-mapper would verify

all candidate locations of the kþ1 seeds and find all mapping loca-

tions at edit distance 0 to k. Yara instead proceeds seed by seed and

determines b by verifying bþ1 seeds and checking that Sb is the first

non-empty stratum. Iterating the pigeonhole principle, the tool stops

after bþ xþ 1 seeds. As the order in which seeds are processed does

not affect the results, Yara tries to minimize the number of verifica-

tions by processing the seeds greedily from the least to the most fre-

quent seed. Moreover, Yara decides, based on fine-tuned internal

thresholds, if it is worth proceeding with the verification phase or

alternatively applying a stronger filtration scheme using 1 or 2-

approximate seeds. The verification is done using a banded version

of the Myers bit-vector algorithm.

Yara maps paired-end reads independently (as single ends). After

mapping, the tool selects a primary mapping location by pairing

ends according to the estimated fragment size. Nonetheless, Yara

reports all relevant mapping locations per end, as the lack of proper

pairing indicates potential structural variations.

Yara is already in use by several groups, it was used for

improved metagenomics classification (Dadi et al., 2017) and was

tested favorably by (B�rinda et al., 2016). In addition it scales well to

many threads. For those reasons we choose it as the first implemen-

tation within the DREAM framework and call the resulting tool

DREAM-Yara.

2.5 Distributed-Yara
A straightforward approach to do a distributed mapping is to split

the reference genome into smaller partitions, index them separately

and search sequencing reads against each index. Such an approach

improves indexing times, but it introduces an overhead on the

mapping step. To make matters even worse the mapping results

have to be consolidated, which is a complicated process as we need

to consider the ranking of multiples mappings per read such as iden-

tifying primary mapping locations. Nevertheless, we applied this

strategy using the Yara read mapper and named it Distributed-Yara.

We included Distributed-Yara in our benchmark under the evalu-

ation section.

2.6 DREAM-Yara
DREAM-Yara is an extension of the Yara read mapper to support

the DREAM framework. In DREAM-Yara, we load sequencing

reads in batches and identify the bins that contain potential mapping

locations for each read. This is done using the IBF search distributor.

As a result, we get b different subsets of the loaded reads represent-

ing the different bins. A read belongs to a subset Rbi if and only if it

or its reverse complement or its mate pair shares enough k-mers

with bin Bi. After that, we map each subset of reads against the

index of the corresponding bin. Then we collect mapping results

from all subsets and consolidate them. This includes a ranking of all

mapping locations per read across all bins based on mapping qual-

ities. Finally, the mapping result is written to a single SAM/BAM

file.

3 Evaluation

In this section, we report the results of two experiments. The

first experiment focuses on evaluating the sensitivity of read map-

pers including that of DREAM-Yara and Yara. Our second experi-

ment emphasizes the runtime and memory consumption of the

indexing step of read mappers. We used different datasets for each

experiment.

3.1 Index creation and updating benchmark
3.1.1 Infrastructure and parameterization

For this benchmark, all tools were ran on a compute server equipped

with 32 (Intel(R) Xeon(R) CPU E5-2650 v3 2.30 GHz) processors

and 130 GB of memory. We used eight threads whenever the tool

allows parallel execution. In particular GEM, DREAM-Yara,

Distributed-Yara and Bowtie-2 indices are built using eight threads.

Whereas for BWA and standard Yara a single thread is used as the

indexing modules of these programs do not support parallel execu-

tion. The IBF used in DREAM-Yara is built with 18-mers and has a

bit vector size of 16GiB (137,438,953,472 bits).

3.1.2 Datasets

As a reasonable metagenomic reference set, we used a set of archaeal

and bacterial complete genome sequences retrieved from NCBI’s

RefSeq database (Haft et al., 2017) dating from September 26,

2017. This dataset comprises 15 250 sequences representing 2991

species, summing up to a total of 31.34 Gbp, a database size for

which it takes significant time to compute a single index. To evalu-

ate partial updating of the indices, the same database was selected

based on the updated Escherichia coli sequences from December 19,

2017. This update set sums up to 0.23 Gbp with one removed se-

quence and 155 new sequences, thus a typical set of sequences for

which we want to update our index.

For DREAM-Yara, we partitioned the reference set into 64, 256

and 1024 independent bins using TaxSBP. As a result we get three

identical reference sets that differ only in the number of bins. In the

case of DIDA framework using BWA, we partitioned the reference

set into 1024 parts using the provided partitioning module.
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Clustering times with TaxSBP are negligible, having only the cost of

reading/writing the input file into separated files for each bin.

Table 1 shows time and memory required to build the index of the

31 GB reference set using different programs. It also shows how much

time is needed to update the same index so that the 155 new sequences

and 1 removed sequence of the species Escherichia coli are accounted

for. We considered Distributed-Yara, DREAM-Yara, standard Yara,

Bowtie2, GEM, BWA and DIDA framework using BWA, in this com-

parison. With the exception of standard Yara and BWA all the other

programs were run with eight threads. The reason is lack of support

for multi-threading by the indexing module of the two programs. We

note that direct comparison of the timings is not fair. Nevertheless, we

believe that parallel building of a single big index does not scale well

with the number of threads. This is further supported by the results

from Bowtie2 and GEM which support parallelism for indexing and

were run with eight threads.

DREAM-Yara requires an IBF in addition to bin-many small indi-

ces. The reported times for DREAM-Yara are the sum of times required

to build/update the small indices and to create the corresponding IBF.

The same is true for the reported memory, except in this case we took

the maximum instead of the sum. Distributed-Yara uses the same indi-

ces as DREAM-Yara, but there is no need for an IBF as we search all

reads against all indices. So in the case of Distributed-Yara, we omit the

time and memory related to IBF construction.

Distributed-Yara and the DIDA framework using BWA exhib-

ited the best time in creating and updating indices. They also have

the smallest memory footprint. Despite of having the least computa-

tional requirements during indexing step, we do not find them to be

a practical choice considering how they slow down the mapping

process as it is shown in the next section. DREAM-Yara is only

18 min slower in creating and 3 min slower in updating indices than

Distributed-Yara. These differences are due to the time needed for

building and updating the complementing IBF.

DREAM-Yara took 1 h and 7 min to index 31.34 Gb of reference

sequences with 1024 bins. That is approximately nine times faster

than the second fastest indexer (Bowtie2) and 26 times faster than the

slowest indexer by standard Yara. Memory consumption was lower

for DREAM-Yara indexer, using 62% less memory compared against

to BWA which is the next best method concerning memory. As it is

shown in Table 1, the peak memory consumption of DREAM-Yara

indexer is coming from the construction of IBF in particular.

DREAM-Yara has also the advantage of having bin-many small

indices which makes rebuilding them less time-consuming. In case of

changes in the reference-set, we have to rebuild only the affected in-

dices, whereas BWA and standard Yara need to rebuild the complete

index for any change in the reference set. To demonstrate the advan-

tage of this, we considered all the reference changes under the spe-

cies E. Coli between September 26, 2017 and December 19, 2017.

This accounted for 155 new sequences and one removed sequence

which affected 42, 15 and 4 bins out of 1024, 256 and 64 bins re-

spectively. These are a small portion of the complete set and rebuild-

ing them took 7 min for 1024 bins, 10 min for 256 bins and 19 min

for 64 bins. This is a significant improvement considering the

amount of time needed if we had one big index which is about a day

for standard Yara, BWA and GEM. Whereas Bowtie2’s indexer

takes about 10 h.

3.2 Rabema benchmarks
3.2.1 Infrastructure and parameterization

We used the same infrastructure in this evaluation as for the index-

ing benchmark. For maximum throughput, all tools were run using

eight threads. For DREAM-Yara and Distributed-Yara, we chose a

1024 bins scheme, as it is the fastest among 64, 256 and 1024 bins

to build indices. All experiments measured read mapping through-

put in giga base pairs per hour (Gbp/h) and memory consumption.

3.2.2 Datasets

We use a publicly released sequencing run (SRA/ENA id:

SRR6504858) submitted by Nanfang Hospital of Southern Medical

University; the genomic DNA used in this study came from a human

gut. This dataset consists of 2� 150bp whole genome sequencing

reads produced by an Illumina HiSeq X Ten instrument. We only

consider single reads for our evaluation and therefore used the first

read file of the pairs which contains approximately 40M reads. In

the case of sensitivity analysis by Rabema, we used the first 1 M

reads for practical reasons.

We use the Rabema benchmark to evaluate mappers’ sensitivity.

The Rabema benchmark (Holtgrewe et al., 2011) (v1.2) measures

the sensitivity of read mappers in finding relevant mapping locations

of genomic reads. We parameterize Rabema to consider all co-opti-

mal mapping locations for each read as relevant, i.e. only best strata.

Rabema computes the sensitivity of each tool as the fraction of rele-

vant mapping locations found per read. For a thorough evaluation,

Rabema classifies mapping locations by their error rate and then

computes the within each error rate class. The benchmark reports

two types of percentual scores, one normalized by the number of

valid mappings of a read and the other absolute percentage of map-

ping locations without any normalization (for example, assume two

reads r1 and r2 map to the database with e.g. 0 errors and assume r1

maps uniquely and r2 maps at 100 locations. Assume read mapper

m1 finds all locations for r1 and r2, read mapper m2 finds the loca-

tion of r1 and 50 locations for r2. In the first case Rabema will report

a sensitivity of ð1þ 1Þ=2 ¼ 1 for m1 and ð1þ 0:5Þ=2 ¼ 0:75 for m2,

in the second case Rabema will report for m1 a sensitivity of ð1
þ100Þ=101 ¼ 1 and for m2 ð1þ 50Þ=101 ¼ 0:5049Þ.

We built a Rabema gold standard by running RazerS 3 in full-

sensitive mode within 5% error rate. Subsequently, we ran the tools

using the unpaired reads as input, as the Rabema benchmark is not

meaningful for paired-end reads.

Table 1. Time and memory required for building indices

bins Build Time Update Time Peak Memory

[hr:min:s] [hr:min:s] [Gb]

DIDA (BWA) 1024 56:07 2:51 0.06

Distributed-Yara 1024 49:10 3:15 8.32

DREAM-Yara

[49:10, 17:52] [3:15, 3:28] [8.32, 16.15]

1024 1:07:03 6:43 16.15

[1:22:33, 21:28] [6:02, 3:40] [12.38, 16.16]

256 1:44:02 9:42 16.16

[1:36:56, 20:04] [9:41, 9:23] [16.32, 16.18]

64 1:57:01 19:04 16.32

Yara 27:17:54 *27:17:54 85.07

Bowtie 2 9:51:42 *9:51:42 89.80

BWA-MEM 19:33:24 *19:33:24 43.83

GEM 20:41:01 *20:41:01 104.00

Note: Time values are wall clock times and Peak Memory refers to the

maximum resident memory occupied by a program (all threads in case of multi-

threading) during execution. Update times refer to time to rebuild indices to reflect

partial changes in databases. Since there is no way to do the same for standard

mappers, similar values as build time are reported[*]. The values in brackets repre-

sent individual time/Peak Memory of FM-indices and IBF, respectively.
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Both normalized and absolute Rabema results are shown in

Table 2. On the left are percentual scores normalized by the number

of valid mapping locations. Hence, as pointed out above, repetitive

reads have less weight. Distributed-Yara, DREAM-Yara and Yara

[s¼0] are the most sensitive tools for finding all co-optimal loca-

tions; they are full-sensitive all the way up to 5% error rate. The

similar sensitivity scores of all derivative mappers of Yara are assur-

ances of no loss in mapping sensitivity due to the distribution of

mapping. GEM is not full-sensitive even though it claims to be so; it

loses a small fraction of normalized locations starting from 2% error

rate. Bowtie 2 and BWA are not designed for this task; indeed, they

lose a number of co-optimal locations.

However, in metagenomics ‘repetitive’ reads often stem from

multiple genomes of similar organisms as opposed to repetitive

regions in a genome. Therefore, all their mapping locations are sig-

nificant for downstream analysis. The middle panel in Table 2

shows Rabema results where we considered the absolute number of

co-optimal locations without any normalization. Here, DREAM-

Yara, Distributed-Yara and Standard Yara [s¼0] are the clear win-

ners in sensitivity. They found all co-optimal locations, while GEM

loses 5.6% of locations at 2% error rate.

In addition, Yara [s¼0] has the highest throughput, being 1.3

times faster than GEM, 2.15 times faster than Bowtie 2 and 3.07

times faster than BWA. The DIDA distribution framework using

BWA as a core mapper is too slow and inefficient for a setup like

this. It is 130 times slower than BWA with one big index. The same

is true for Distributed-Yara (a naive distribution using Yara.) It is

103.69 times slower than using the standard Yara mapper.

DREAM-Yara, on the other hand, is only 2.78 times slower than

standard Yara and competitive with the other read mappers.

In both evaluations, we showed that DREAM-Yara removes the

bottleneck of large index reconstruction successfully while remain-

ing competitive in speed and memory consumption to the standard

read mappers and being 37.25 times faster than a trivial distribu-

tion. When we consider the time and space requirements for map-

ping, DREAM-Yara needed 56% less memory when compared

against Bowtie2, BWA and standard Yara in this task.

4 Discussion

We hope that our work in this manuscript has an impact in various

research directions. First, we think that DREAM-Yara will serve the

community as a very practical, exact read mapper for Illumina reads

and large databases. Second, we think that the DREAM framework

will trigger further work in this area. The most crucial point in the

DREAM framework is the question whether a distribution of reads

can be done fast enough in comparison to the time needed for map-

ping the reads to one or a handful of indices. We showed that the

combination of interleaved Bloom filters and the k-mer lemma

answers this question positively.

We think it will be interesting to investigate in the future for

which parameters the k-mer directory implementation and for

which the IBF implementation have more advantages. For large, ba-

sically arbitrary k, we presented with the IBF a very viable way to

implement an approximate search distributor.

Another interesting area to extend this work will be how to bin

the sequences. How many bins are optimal for a given set? Will we

benefit from allowing to further subdivide the genomic contigs? In

this work we opted for a taxonomic based clustering for being a

straightforward implementation. However, a clustering based on se-

quence similarity would be beneficial for computing the bins in

DREAM-Yara. The taxonomy classification is not purely sequence-

based and by definition can have distantly related groups with high-

ly similar sequences or closely related groups with low sequence

similarity. A sequence-based approach could result in a better distri-

bution, meaning that reads would be potentially mapped to fewer

Table 2. Rabema benchmark results on 1 M human gut metagenomic reads (SRA/ENA id: SRR6504858) mapped against 31.34 GB archaeal

and bacterial complete genome sequences retrieved from NCBI’s RefSeq database

Note: The colored panels show the results of finding all co-optimal mapping locations of the reads; Big numbers show total Rabema scores, while small numbers show

marginal scores for the mapping locations at

�
0 1 2
3 4 5

�
% error rate. The left panel shows the sensitivity of mappers normalized by the number of locations reported

per read, while the right panel shows absolute sensitivity. Memory and speed assessments on the right are done using the first 40M reads of the same read set.
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bins, speeding up the mapping procedure. Important to note is that

the evenness of the bin sizes makes a difference for our Bloom filter

implementation and it is an important aspect to be considered when

computing the binning. This comes from the fact that the IBF has

bin-many Bloom filters of the same size. Hence the largest bin will

have the highest false positive rate for a k-mer, which would result

in worse filtering.

Finally, it will be interesting to investigate whether other indices

can take advantage of the framework. While FM-indices support

fast approximate searching, they do not support the compression of

similar sequences. However, the bins in the DREAM index will con-

tain by construction very similar sequences. Hence we anticipate

that compressed indices together with the IBF based search distribu-

tor will result in very practical, space efficient and fast read mappers

for very large, repetitive databases.

5 Conclusion

In conclusion, we presented the novel DREAM framework for distrib-

uted read mapping which can support fast updates of the sub-indices as

well as compression by design. We implemented within this framework

DREAM-Yara, a distributed version of the Yara (Siragusa, 2013) read

mapper. The main contribution lies in our implementation of the dy-

namic search distributor by using interleaved Bloom filters together

with the k-mer counting lemma and an in-memory distributed version

of Yara. We showed that the resulting read mapper is very competitive

in terms of speed, it is faster than BWA and only slightly slower than

the Bowtie2, which both use one large FM-index, but more than 37.25

times faster than a trivial distribution. We also showed that DREAM-

Yara can conduct a typical batch index update for a metagenomic data-

set in about 6 min, whereas the rebuilding Bowtie2 index takes 10 h

and that of BWA or Yara index takes about a day.

DREAM-Yara is part of the SeqAn library for efficient data types

and algorithms.
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